
HYYPERLINK
No Blocks. No Chains.

D. A. Good
Hyyperlink Foundation

contact@hyyperlink.com

December 8, 2024

https://hyyperlink.com

https://hyyperlink.com

Hyyperlink Draft 0.1.6

Contents

1 Overview 2

2 Network Architecture 2
2.1 P2P Network 2
2.2 Network Protocols 2
2.3 Peer Selection and Reputation 3

2.3.1 Reputation Scoring 3
2.3.2 Transaction Propagation Rules . . . 3
2.3.3 Connection Management 3

3 Consensus Mechanism 3
3.1 DAG Structure 3

3.1.1 Candidate Selection 3
3.1.2 Reference Selection Algorithm . . . 4
3.1.3 Reference Validation 4

3.2 Transaction Processing 4
3.2.1 Reference Resolution 4
3.2.2 State Application 4

4 Token Generation Through Key Discovery 4
4.1 Key Discovery Verification 4
4.2 Mining Process Details 4
4.3 Mining Reward Calculation 5
4.4 Mining Process Implementation 5
4.5 Mining Reward Issuance 5

5 Transaction Processing 6
5.1 Transaction Creation and Validation 6

5.1.1 Reference Requirements 6
5.1.2 Balance and Fee Rules 6

5.2 Transaction Propagation 6
5.2.1 Reputation Scoring 6
5.2.2 Propagation Rules 6
5.2.3 Network Optimization 6
5.2.4 Gossip Protocol 7

5.3 Cryptographic Verification 7
5.4 Stream Management 7
5.5 State Updates 7

5.5.1 Update Process 7
5.5.2 Safety Mechanisms 8

5.6 Reputation System Implementation 8
5.6.1 Wallet Reputation Calculation . . . 8
5.6.2 Peer Reputation Management 8
5.6.3 Reputation Impact on Network Op-

erations 9

6 State Management 9
6.1 Graph State 9
6.2 Database Management 9

6.2.1 Performance Optimizations 9
6.2.2 Reliability Mechanisms 9
6.2.3 File System Safety 10

7 Network Synchronization 10
7.1 Full Sync Protocol 10

8 Security and Spam Prevention 10
8.1 Reputation System Architecture 10

8.1.1 Wallet Reputation 11
8.1.2 Transaction Validation Pipeline . . . 11
8.1.3 Anti-Spam Mechanisms 11
8.1.4 Attack Resistance 11

8.2 Transaction Filtering 12
8.2.1 Filtering Objectives 12
8.2.2 Core Filtering Rules 12
8.2.3 Special Cases and Exceptions 12

8.2.4 Impact on Network Health 12

9 Transaction Model 13
9.1 Transaction Structure 13
9.2 Instruction Types 13

10 Account System 13
10.1 Account Creation 13
10.2 Address Format 13

11 Token Economics 13
11.1 Special Addresses 13

11.1.1 Token Grant Address 13
11.1.2 Burn Address 13

11.2 Token Units 14
11.3 Supply Mechanics 14

11.3.1 Initial Distribution 14
11.3.2 Supply Inflation 14
11.3.3 Supply Deflation 14

12 Conclusion 14

13 Mining and Validation 14
13.1 Mining Proof Verification 14

Hyyperlink Technical Whitepaper 1 December 8, 2024

HYYPERLINK
No Blocks. No Chains.

D. A. Good

Hyyperlink Foundation

contact@hyyperlink.com

D. A. Good
Hyyperlink Foundation
contact@hyyperlink.com

December 8, 2024

Hyyperlink introduces a directed acyclic graph (DAG) based digital currency that elim-
inates the need for blocks and chains. Starting with an initial supply of 100 million
tokens distributed through a genesis transaction, the system combines validator-based
consensus with instruction-driven transactions. The network maintains stability through
a reputation-based peer-2-peer propagation system and targets 2

1 Overview

Hyyperlink is a peer-to-peer digital currency system built
on a directed acyclic graph (DAG) architecture. The
system uses validator-based consensus with proof-of-work
mining and implements a reputation-based transaction
propagation mechanism to prevent spam and maintain
network health.

2 Network Architecture

2.1 P2P Network

The network is built on libp2p1 with both TCP and
WebSocket transport support. Node discovery uses a
Kademlia distributed hash table (DHT)2 - a decentralized
system that provides a lookup service similar to a hash
table, where the responsibility for maintaining key map-
pings is distributed among nodes in a way that minimizes
disruption from node changes.

Each node maintains:

• A target of 8 peer connections

• Persistent connections to validator nodes

• Regular health checks on connections

Node initialization process:

1. Create or load P2P keypair from config directory

2. Initialize libp2p host with TCP and WebSocket trans-
ports

3. Set up protocol handlers for all supported protocols

4. Bootstrap DHT with validator nodes

5. Begin periodic peer discovery
1https://libp2p.io/
2https://en.wikipedia.org/wiki/Distributed_hash_table

2.2 Network Protocols

The system implements five core protocols:
FullSyncProtocol

• Handles initial graph synchronization

• Uses batched transaction transfer

• Implements retry mechanism with exponential backoff

• Maximum 3 retry attempts per sync operation

StateHashProtocol

• Quick state verification between peers

• Uses SHA3-256 of all transaction hashes

• Triggers full sync on mismatch

TransactionProtocol

• Handles new transaction propagation

• Implements reputation-based forwarding

• Maintains connection pools for efficient broadcasting

MissingTransactionsProtocol

• Retrieves specific transactions by hash

• Uses batched requests/responses

• Handles partial fulfillment of requests

ValidatorProtocol

• Handles validator-specific messages

• Manages transaction finalization

• Coordinates validator signatures

• Processes mining rewards

2

https://libp2p.io/
https://en.wikipedia.org/wiki/Distributed_hash_table

Hyyperlink Draft 0.1.6

2.3 Peer Selection and Reputation

The system implements a peer selection mechanism based
on reputation scores. Each peer’s reputation is tracked on
a scale from 0.0 to 1.0, with several key thresholds:

• Initial peer reputation: 0.5

• Minimum threshold for transaction relay: 0.3

• Maximum peer reputation: 1.0

• Minimum peer reputation: 0.0

2.3.1 Reputation Scoring

Peer reputation is dynamically adjusted based on behav-
ior:

• Positive Actions (+0.05):

– Successfully propagating valid transactions

– Maintaining stable connections

– Providing valid sync responses

• Negative Actions (-0.1):

– Propagating invalid transactions

– Providing invalid sync data

– Connection instability

The reputation system tracks both peer and transaction
source reputation:

1 const (
2 MinimumReputationThreshold = 0.5
3 ReputationIncrement = 0.1
4 ReputationDecrement = 0.2
5 InitialReputation = 1.0
6

7 // Peer-specific thresholds
8 MinimumPeerReputationThreshold = 0.3
9 PeerReputationIncrement = 0.05

10 PeerReputationDecrement = 0.1
11 InitialPeerReputation = 0.5
12)
13

14 // Reputation changes based on:
15 // - Transaction validity
16 // - Network behavior
17 // - Connection stability
18 // - Data propagation accuracy

2.3.2 Transaction Propagation Rules

The system implements transaction propagation through
multiple protocols:

1. Transaction Broadcasting:

• Uses TransactionProtocol

• Broadcasts to all connected peers

• Implements retry mechanism

• Tracks broadcast status per transaction

2. Transaction Synchronization:

• Uses MissingTransactionsProtocol

• Handles missing transaction requests

• Batches responses for efficiency

• Validates transaction references

The propagation logic is implemented as:

1 func (n *Node) BroadcastTransaction(tx *Transaction) {
2 if tx.From == TokenGrantAddress ||
3 tx.MiningProof != nil ||
4 n.graph.State[tx.From] >= PovertyLine {
5 // Priority transaction - broadcast to all

qualified peers
6 for _, peerID := range n.host.Network().Peers

() {
7 if n.GetPeerReputation(peerID) >=

MinimumPeerReputationThreshold {
8 go n.SendTransactionToPeer(tx, peerID)
9 }

10 }
11 } else if n.GetWalletReputation(tx.From) >=

MinimumReputationThreshold {
12 // Standard transaction - broadcast only if

sender has sufficient reputation
13 for _, peerID := range n.host.Network().Peers

() {
14 if n.GetPeerReputation(peerID) >=

MinimumPeerReputationThreshold {
15 go n.SendTransactionToPeer(tx, peerID)
16 }
17 }
18 }
19 }

2.3.3 Connection Management

The system maintains a target of 8 peer connections, with
special handling for validator nodes:

• Persistent connections to validator nodes

• Regular health checks every 30 seconds

• Automatic reconnection attempts on failure

• Connection pooling for efficient message distribution

This reputation-based peer selection system provides
several benefits:

• Spam prevention through reputation requirements

• Natural isolation of misbehaving peers

• Efficient resource allocation to reliable peers

• Automatic network self-organization

• Resilience against network attacks

The combination of reputation tracking, dynamic ad-
justment, and differentiated propagation rules creates a
robust peer-to-peer network that can efficiently distribute
transactions while maintaining security against various
forms of abuse.

3 Consensus Mechanism

3.1 DAG Structure

The system uses a DAG where each transaction must ref-
erence 1-4 previous transactions. The reference selection
process follows these steps:

3.1.1 Candidate Selection

• Scans recent transactions within 12-hour window

• Prioritizes newer transactions

• Excludes self-references

Hyyperlink Technical Whitepaper 3 December 8, 2024

Hyyperlink Draft 0.1.6

Algorithm 1 Reference Selection

1: totalWeight← 0
2: for i← 0 to len(candidateTxs)− 1 do
3: weight← len(candidateTxs)− i
4: totalWeight← totalWeight+ weight
5: end for
6: randomWeight← random(0, totalWeight)

3.1.2 Reference Selection Algorithm

3.1.3 Reference Validation

• Ensures minimum reference count

• Verifies reference existence

• Checks reference age

• Prevents circular references

3.2 Transaction Processing

Transactions are processed in parallel with the following
rules:

3.2.1 Reference Resolution

• All referenced transactions must exist

• References must be within time window

• First transaction in empty graph exempted

3.2.2 State Application

• Atomic balance updates

• Double-spend prevention

• Fee processing

• Mining reward distribution

4 Token Generation Through Key
Discovery

The Hyyperlink token generation system implements a
novel approach that is unique among cryptocurrency
systems. Instead of competing to process transactions,
participants generate Ed25519 key pairs and encode
their public keys, searching for specific properties in the
resulting public key hashes.

This approach serves multiple purposes:

1. Provides a deterministic and verifiable way to gener-
ate new tokens

2. Creates controlled token issuance through tunable dif-
ficulty requirements

3. Enables fully independent mining without coordina-
tion or competition

Unlike traditional mining systems, key discovery allows
parallel token generation without requiring global consen-
sus or competition between miners. Each discovered key
meeting the difficulty requirement represents a provably
rare artifact that can be independently verified by any
participant.

4.1 Key Discovery Verification

The verification process ensures three critical aspects:

1. The winning key meets the difficulty requirement

2. The discoverer can sign with the winning key

3. The miner has properly claimed the reward

This creates an unforgeable chain of custody from dis-
covery to reward:

1 proofMessage := fmt.Sprintf("%s:%s", proof.
WinningAddress, proof.MinerAddress)

2

3 // Verify winning key signature
4 winningPubKey, err := AddressToPublicKey(proof.

WinningAddress)
5 if !ed25519.Verify(winningPubKey, []byte(proofMessage)

, proof.WinningSignature) {
6 return false
7 }
8

9 // Verify miner signature
10 minerPubKey, err := AddressToPublicKey(proof.

MinerAddress)
11 if !ed25519.Verify(minerPubKey, []byte(proofMessage),

proof.MinerSignature) {
12 return false
13 }
14

15 // Verify difficulty requirement
16 isWinner, difficulty := IsWinningKey(proof.

WinningAddress, MinMinerDifficulty)
17 if !isWinner {
18 return false
19 }

4.2 Mining Process Details

The mining process follows a simple but effective sequence:

1. Generate a new Ed25519 keypair

2. Take the public key and encode it using Base58:

address = base58(ed25519.publicKey) (1)

3. Calculate SHA3-256 hash of the Base58-encoded pub-
lic key:

hash = sha3.256(address) (2)

4. Count the leading zeros in the resulting hash

5. If the number of leading zeros meets or exceeds the
minimum difficulty, a reward is issued proportional to
the rarity of the hash

This process creates a provably fair system where:

• The difficulty of finding a winning key is predictable

• The rarity of the key can be instantly verified by any
participant

• Rewards scale with the difficulty of the discovered key

• No coordination between miners is required

Hyyperlink Technical Whitepaper 4 December 8, 2024

Hyyperlink Draft 0.1.6

4.3 Mining Reward Calculation

The mining reward follows a linear scaling formula:

reward = Rbase · (d− dmin + 1) (3)

Where:

• Rbase is 1.00000000 tokens

• dmin is 5 leading zeros

• d is the number of leading zeros in the hash

This creates an incentive structure where higher diffi-
culties receive proportionally larger rewards:

• 5 zeros = 1.00000000 tokens

• 6 zeros = 2.00000000 tokens

• 7 zeros = 3.00000000 tokens

4.4 Mining Process Implementation

The mining process operates as a multi-threaded system
that efficiently utilizes available CPU cores:

1. Generates Ed25519 key pairs

2. Checks if they meet the difficulty requirement

3. Submits proofs when winning keys are found

4. Maintains statistics on keys checked per second

1 func MiningWorker(node *Node) {
2 for {
3 // Generate new Ed25519 keypair
4 pubKey, privKey, err := ed25519.GenerateKey(

rand.Reader)
5 if err != nil {
6 continue
7 }
8

9 // Encode public key
10 pubKeyBase58 := base58.Encode(pubKey)
11

12 // Check if key meets difficulty requirement
13 hash := sha3.Sum256([]byte(pubKeyBase58))
14 difficulty := countLeadingZeros(hash)
15

16 if difficulty >= MinMinerDifficulty {
17 // Create and submit mining proof
18 proof := &MiningProof{
19 WinningAddress: pubKeyBase58,
20 MinerAddress: node.wallet.Address

(),
21 WinningSignature: nil,
22 MinerSignature: nil,
23 }
24

25 // Sign proof with winning key
26 message := fmt.Sprintf("%s:%s", proof.

WinningAddress, proof.MinerAddress)
27 proof.WinningSignature = ed25519.Sign(

privKey, []byte(message))
28

29 // Sign with miner wallet
30 proof.MinerSignature = node.wallet.Sign([]

byte(message))
31

32 // Submit proof
33 node.SubmitMiningProof(proof)
34 }
35 }
36 }

4.5 Mining Reward Issuance

When a miner submits a proof, the validator processes it
through several stages:

1 // First, verify the mining proof
2 proof := tx.MiningProof
3 proofMessage := fmt.Sprintf("%s:%s", proof.

WinningAddress, proof.MinerAddress)
4

5 // Verify signatures and difficulty
6 winningPubKey, _ := AddressToPublicKey(proof.

WinningAddress)
7 if !ed25519.Verify(winningPubKey, []byte(proofMessage)

, proof.WinningSignature) {
8 return false
9 }

10

11 minerPubKey, _ := AddressToPublicKey(proof.
MinerAddress)

12 if !ed25519.Verify(minerPubKey, []byte(proofMessage),
proof.MinerSignature) {

13 return false
14 }
15

16 isWinner, difficulty := IsWinningKey(proof.
WinningAddress, MinMinerDifficulty)

17 if !isWinner {
18 return false
19 }
20

21 // Calculate reward based on difficulty
22 reward := CalculateMinerReward(difficulty)
23

24 // Create and process the token issuance transaction
25 tx := Transaction{
26 From: TokenGrantAddress,
27 Timestamp: time.Now().UnixNano(),
28 Changes: []TransactionChange{
29 {
30 To: minerAddress,
31 Amount: reward - BaseFee, // Miner pays

transaction fee
32 },
33 },
34 Fee: BaseFee,
35 MiningProof: proof,
36 }
37

38 // Apply the state change
39 if err := g.ApplyTransaction(tx); err != nil {
40 return fmt.Errorf("failed to apply mining

transaction: %v", err)
41 }

The mining reward issuance process implements multi-
ple security checks before creating new tokens:

1. Proof Verification: The system first verifies that
both the winning key and miner’s key have properly
signed the proof message, creating a cryptographic
chain of custody.

2. Difficulty Check: The winning address is verified to
meet the minimum difficulty requirement by counting
leading zeros in its hash.

3. Reward Calculation: The reward amount is cal-
culated based on the achieved difficulty level, with
higher difficulties earning proportionally larger re-
wards.

4. Token Creation: A special transaction is created
from the TokenGrantAddress, which has unique priv-
ileges to issue new tokens.

5. Fee Handling: The transaction includes the stan-
dard network fee, which is deducted from the mining
reward, maintaining consistency with regular trans-
action rules.

This process ensures that token creation is:

Hyyperlink Technical Whitepaper 5 December 8, 2024

Hyyperlink Draft 0.1.6

• Cryptographically secure

• Independently verifiable

• Automatically scaled by difficulty

• Properly recorded in the network state

This process ensures that:

• The mining proof is valid and meets difficulty require-
ments

• The reward is calculated based on the achieved diffi-
culty

• The token issuance is atomic with proof verification

• The miner pays the standard transaction fee from
their reward

• The state change is properly recorded in the DAG

5 Transaction Processing

5.1 Transaction Creation and Validation

Each transaction must reference previous transactions,
creating a web of confirmations. The system enforces sev-
eral rules:

5.1.1 Reference Requirements

• Minimum of 1 reference

• Maximum of 4 references

• References must be within a 12-hour window

• First transaction in network exempted from references

5.1.2 Balance and Fee Rules

• All transactions must pay a base fee (10000 units)

• Total transaction amount must not exceed sender’s
balance

• Fees are burned (sent to BURN address)

The transaction structure is defined as:

1 type Transaction struct {
2 Timestamp int64
3 Hash string
4 From string
5 Signature string
6 Changes []TransactionChange
7 References []string
8 Fee uint64
9 MiningProof *MiningProof

10 }

5.2 Transaction Propagation

The propagation system implements a reputation-based
flooding protocol that balances network efficiency with
spam prevention. The system uses multiple mechanisms
to ensure reliable and secure transaction propagation:

5.2.1 Reputation Scoring

The system maintains two types of reputation scores:

1. Wallet Reputation (0.0 - 1.0):

• Wealthy accounts (above poverty line) automat-
ically receive maximum reputation

• New wallets start with a base reputation of 1.0

• Successful transactions increase reputation by
0.1

• Invalid transactions decrease reputation by 0.2

• Reputation is weighted by the wallet’s balance
relative to the poverty line

2. Peer Reputation (0.0 - 1.0):

• New peers start with reputation of 0.5

• Propagating valid transactions increases reputa-
tion by 0.05

• Propagating invalid transactions decreases repu-
tation by 0.1

• Minimum threshold of 0.3 required for transac-
tion relay

5.2.2 Propagation Rules

Transactions are propagated differently based on their
source:

1. Priority Transactions:

• Mining reward transactions (from Token-
GrantAddress)

• Transactions from accounts above the poverty
line

• These are always propagated to all peers above
minimum reputation

2. Regular Transactions:

• Must come from wallets with reputation above
0.5

• Are only propagated to peers with reputation
above 0.3

• First transaction from new wallets must exceed
minimum amount threshold

5.2.3 Network Optimization

The system implements several optimizations for efficient
propagation:

• Stream reuse for multiple transactions to the same
peer

• Transaction deduplication using a broadcast cache

• Automatic stream health checks and recovery

• Batched transaction processing during sync

Hyyperlink Technical Whitepaper 6 December 8, 2024

Hyyperlink Draft 0.1.6

5.2.4 Gossip Protocol

A background gossip protocol runs every 10 seconds to
ensure transaction propagation reliability:

• Checks for non-broadcasted transactions in the local
graph

• Re-attempts propagation of previously failed broad-
casts

• Helps network recovery after temporary partitions

• Maintains transaction availability across the network

This multi-layered approach creates a robust propaga-
tion system that:

• Prevents spam through reputation requirements

• Prioritizes transactions from proven participants

• Maintains network efficiency through peer scoring

• Ensures reliable transaction propagation

• Recovers automatically from network issues

5.3 Cryptographic Verification

Transactions must meet the following cryptographic re-
quirements:

• Transactions must be signed by sender

• Hash must be correctly computed

• Mining proofs must be valid (for mining transactions)

1 // Hash verification
2 if tx.Hash != tx.ComputeHash() {
3 return fmt.Errorf("invalid transaction hash")
4 }
5

6 // Balance verification
7 totalAmount := tx.Fee
8 for _, change := range tx.Changes {
9 totalAmount += change.Amount

10 }
11 if g.State[tx.From] < totalAmount {
12 return fmt.Errorf("insufficient balance")
13 }
14

15 // Signature verification
16 senderPubKey, err := AddressToPublicKey(tx.From)
17 if !tx.Verify(senderPubKey) {
18 return fmt.Errorf("invalid signature")
19 }

5.4 Stream Management

The system implements stream management:

• Reuses existing healthy streams

• Implements timeout handling

• Provides acknowledgment system

1 // Check existing streams
2 for _, conn := range n.host.Network().ConnsToPeer(

peerID) {
3 for _, stream := range conn.GetStreams() {
4 if stream.Protocol() == protocol.ID(

TransactionProtocol) {
5 // Reuse existing stream if healthy
6 if err := stream.SetWriteDeadline(time.Now

().Add(time.Second)); err == nil {
7 if _, err := stream.Write([]byte{0});

err == nil {

8 stream.SetWriteDeadline(time.Time
{})

9 existingStream = stream
10 break
11 }
12 }
13 stream.Reset()
14 }
15 }
16 }

5.5 State Updates

The Hyyperlink system implements atomic state updates
to ensure consistency and prevent race conditions when
modifying account balances. The state update mechanism
is a critical component that:

• Ensures atomic (all-or-nothing) balance updates

• Prevents negative balances

• Handles both regular transactions and mining re-
wards

• Maintains consistency during concurrent operations

5.5.1 Update Process

The state update process follows several key steps:

1. Balance Change Collection: First, all balance
changes from the transaction are collected and cat-
egorized:

• Positive changes (credits to receiving accounts)

• Negative changes (debits from sending accounts)

• Fee deductions (sent to burn address)

2. Special Case Handling: Mining reward transac-
tions from the TokenGrantAddress are processed dif-
ferently:

• No balance verification needed (allowed to create
new tokens)

• Direct credit to recipient addresses

• Fee still collected and burned

3. Balance Verification: For regular transactions:

• Total outgoing amount (including fee) is calcu-
lated

• Sender’s balance is verified to be sufficient

• Prevents any possibility of overdraft

4. Atomic Application: Changes are applied atomi-
cally:

• All balance updates happen together

• If any part fails, entire transaction is rolled back

• Maintains system consistency

The implementation ensures safe concurrent operation:

1 func (g *Graph) ApplyTransaction(tx Transaction) error
{

2 balanceChanges := make(map[string]uint64)
3 negativeChanges := make(map[string]uint64)
4

5 // Process changes
6 if tx.From == TokenGrantAddress {
7 // Handle mining rewards
8 for _, change := range tx.Changes {

Hyyperlink Technical Whitepaper 7 December 8, 2024

Hyyperlink Draft 0.1.6

9 balanceChanges[change.To] = SafeAdd(
balanceChanges[change.To], change.Amount)

10 }
11 } else {
12 // Handle regular transactions
13 totalDeduction := tx.Fee
14 for _, change := range tx.Changes {
15 totalDeduction = SafeAdd(totalDeduction,

change.Amount)
16 balanceChanges[change.To] = SafeAdd(

balanceChanges[change.To], change.Amount)
17 }
18 negativeChanges[tx.From] = totalDeduction
19 }
20

21 // Apply changes atomically
22 for address, addition := range balanceChanges {
23 currentBalance := g.State[address]
24 subtraction := negativeChanges[address]
25

26 if subtraction > 0 {
27 if subtraction > currentBalance {
28 return fmt.Errorf("negative balance

would occur")
29 }
30 currentBalance -= subtraction
31 }
32

33 g.State[address] = SafeAdd(currentBalance,
addition)

34 }
35

36 return nil
37 }

5.5.2 Safety Mechanisms

The system implements several safety mechanisms to
maintain integrity:

1. Overflow Protection:

• All arithmetic operations are checked for over-
flow

• Uses safe addition function that panics on over-
flow

• Prevents balance corruption from integer over-
flow

2. Validation Checks:

• Pre-validation of transaction amounts

• Balance sufficiency verification

• Fee verification

3. Error Handling:

• Clear error messages for debugging

• Transaction rollback on any error

• Logging of all state changes

This comprehensive state management system ensures
that the network maintains consistent and accurate ac-
count balances while preventing any potential exploitation
through race conditions or arithmetic errors. The atomic
nature of updates, combined with thorough validation and
safety checks, provides a robust foundation for the net-
work’s financial operations.

5.6 Reputation System Implementation

The reputation system uses two distinct but intercon-
nected reputation tracking mechanisms: wallet reputation
and peer reputation. Each serves a different purpose in
maintaining network health.

5.6.1 Wallet Reputation Calculation

The wallet reputation system implements a balance-
weighted approach:

1 func (n *Node) GetWalletReputation(address string)
float64 {

2 balance := n.graph.State[address]
3 if balance >= PovertyLine {
4 return MaxReputation
5 }
6

7 reputation, exists := n.reputations[address]
8 if !exists {
9 balanceWeight := float64(balance) / float64(

PovertyLine)
10 return InitialReputation * (1 + balanceWeight)
11 }
12 return reputation
13 }

This implementation provides several key features:

1. Wealth-Based Trust:

• Accounts with balances above the poverty line
(10 HYY) automatically receive maximum rep-
utation

• This reflects the assumption that accounts with
significant stakes are less likely to spam

• Provides immediate trust for well-funded ac-
counts

2. Balance Weighting:

• For accounts below the poverty line, reputation
is weighted by their balance

• The weighting factor is calculated as:
balanceWeight = balance/PovertyLine

• This creates a smooth progression of trust as ac-
counts accumulate funds

3. New Account Handling:

• New accounts start with a base reputation of 1.0

• This base value is then modified by their balance
weight

• Allows new accounts to participate while main-
taining spam protection

5.6.2 Peer Reputation Management

The peer reputation system focuses on network behavior:

1 func (n *Node) UpdatePeerReputation(peerID peer.ID,
change float64) {

2 current, exists := n.reputations[peerID.String()]
3 if !exists {
4 current = InitialPeerReputation
5 }
6

7 current += change
8

9 if current > MaxPeerReputation {
10 current = MaxPeerReputation
11 } else if current < MinPeerReputation {
12 current = MinPeerReputation
13 }
14

15 n.reputations[peerID.String()] = current
16 }

This implementation provides:

1. Bounded Reputation:

• Reputation is capped between 0.0 and 1.0

Hyyperlink Technical Whitepaper 8 December 8, 2024

Hyyperlink Draft 0.1.6

• Prevents reputation inflation or underflow

• Ensures consistent behavior across the network

2. Gradual Trust Building:

• New peers start at 0.5 reputation

• Small positive increments (+0.05) for good be-
havior

• Larger negative increments (-0.1) for bad behav-
ior

• Creates bias toward conservative trust

3. Persistent Memory:

• Reputation persists across connection sessions

• Allows network to remember reliable peers

• Helps maintain stable peer relationships

5.6.3 Reputation Impact on Network Operations

The reputation scores directly influence network behavior:

1. Transaction Propagation:

• Transactions from high-reputation wallets are
prioritized

• Only peers with reputation ¿= 0.3 receive trans-
action broadcasts

• Creates natural spam filtering at network level

2. Peer Selection:

• Higher reputation peers are preferred for connec-
tion maintenance

• Low reputation peers may be disconnected dur-
ing network pruning

• Helps maintain optimal network topology

3. Resource Allocation:

• Connection slots are preferentially allocated to
high-reputation peers

• Sync requests from high-reputation peers are pri-
oritized

• Optimizes network resource utilization

This dual reputation system creates a self-regulating
network where both account behavior and peer perfor-
mance contribute to overall network health. The system
is designed to be:

• Self-balancing: Poor behavior is naturally penalized
while good behavior is rewarded

• Attack-resistant: Multiple reputation factors make
network abuse expensive

• Performance-oriented: Resources are automati-
cally allocated to reliable participants

• Recovery-capable: Reputation can be rebuilt
through consistent good behavior

6 State Management

6.1 Graph State

The graph state represents the current network consensus,
tracking:

1. Transaction History:

• Complete DAG of all transactions

• Reference relationships

• Temporal ordering

2. Account Balances:

• Current balance for all addresses

• Atomic updates during transaction processing

• Double-spend prevention

3. Validator Set:

• Current validator nodes

• Validator status tracking

• Update history

6.2 Database Management

The persistence layer uses SQLite as its storage back-
end, implementing several critical optimizations and safety
measures to ensure reliable operation at scale.

6.2.1 Performance Optimizations

The system implements several performance-focused fea-
tures:

• Batch Processing:

– Transactions are collected into batches of 100

– Reduces disk I/O overhead

– Improves throughput under high load

• Prepared Statements:

– SQL statements are pre-compiled

– Reduces parsing overhead

– Prevents SQL injection vulnerabilities

• Transaction Pooling:

– Reuses database connections

– Minimizes connection overhead

– Manages concurrent access efficiently

6.2.2 Reliability Mechanisms

The database layer implements multiple reliability features
to ensure data integrity:

1. Atomic Commits:

• Database transactions are all-or-nothing

• Batch operations are atomic

• Prevents partial updates during failures

2. Rollback Protection:

• Automatic rollback on errors

Hyyperlink Technical Whitepaper 9 December 8, 2024

Hyyperlink Draft 0.1.6

• Transaction boundary management

• State consistency preservation

3. Corruption Prevention:

• Safe file handling practices

• Directory traversal protection

• Proper permission management

The implementation ensures safe database operations:

1 func ProcessBatch() {
2 batchMutex.Lock()
3 batch := transactionBatch
4 transactionBatch = nil
5 batchMutex.Unlock()
6

7 db := GetDB()
8 dbTx, err := db.Beginx()
9 if err != nil {

10 LogError("Failed to begin database transaction
: %v", err)

11 return
12 }
13

14 stmt, err := dbTx.Prepare(‘INSERT OR REPLACE INTO
transactions (hash, data) VALUES (?, ?)‘)

15 if err != nil {
16 LogError("Failed to prepare statement: %v",

err)
17 if err := dbTx.Rollback(); err != nil {
18 LogError("Failed to rollback database

transaction: %v", err)
19 }
20 return
21 }
22 defer stmt.Close()
23

24 // Process batch with rollback protection
25 for _, tx := range batch {
26 txData, err := json.Marshal(tx)
27 if err != nil {
28 LogError("Failed to marshal transaction: %

v", err)
29 continue
30 }
31

32 _, err = stmt.Exec(tx.Hash, string(txData))
33 if err != nil {
34 LogError("Failed to insert/update

transaction: %v", err)
35 if err := dbTx.Rollback(); err != nil {
36 LogError("Failed to rollback database

transaction: %v", err)
37 }
38 return
39 }
40 }
41

42 if err := dbTx.Commit(); err != nil {
43 LogError("Failed to commit database

transaction: %v", err)
44 if err := dbTx.Rollback(); err != nil {
45 LogError("Failed to rollback database

transaction: %v", err)
46 }
47 return
48 }
49 }

6.2.3 File System Safety

The system implements careful file system management:

1. Path Validation:

• Sanitizes database file paths

• Prevents directory traversal attacks

• Ensures operations stay within config directory

2. Permission Management:

• Database files created with 0600 permissions

• Directories created with 0700 permissions

• Prevents unauthorized access

3. Resource Management:

• Proper file handle cleanup

• Deferred statement closing

• Memory leak prevention

The system also provides flexibility through configura-
tion:

• Optional in-memory database for testing

• Configurable batch sizes

• Automatic database file creation

This comprehensive approach to database management
ensures that:

• Transaction data is stored reliably

• System performance remains high under load

• Data integrity is maintained

• Recovery from errors is automatic

• Security is maintained at the storage layer

7 Network Synchronization

7.1 Full Sync Protocol

The sync process implements the following message struc-
tures:

1 type SyncRequest struct {
2 LastHash string
3 LastTimestamp int64
4 }
5

6 type SyncResponse struct {
7 Transactions []Transaction
8 HasMore bool
9 NextHash string

10 }

8 Security and Spam Prevention

The Hyyperlink network implements a comprehensive se-
curity and spam prevention system that combines reputa-
tion tracking, transaction validation, and economic incen-
tives. This multi-layered approach ensures network health
while remaining permissionless and decentralized.

8.1 Reputation System Architecture

The system employs a dual-reputation model that sepa-
rately tracks both wallet and peer behavior. This sepa-
ration allows for fine-grained control over network partic-
ipation while maintaining flexibility for different types of
actors.

Hyyperlink Technical Whitepaper 10 December 8, 2024

Hyyperlink Draft 0.1.6

8.1.1 Wallet Reputation

Wallet reputation is calculated using a formula that con-
siders both transaction history and economic stake:

Rw =

{
Rmax if B ≥ P

Ri · (1 + B
P
) otherwise

(4)

where:

• Rw is the wallet’s reputation score

• Rmax is the maximum reputation (1.0)

• B is the wallet’s current balance

• P is the poverty line threshold (10 HYY)

• Ri is the initial reputation score (1.0)

This formula creates several important security proper-
ties:

• Wealthy accounts automatically receive full trust, as
they have economic stake

• New accounts receive a moderate initial trust level

• Trust scales with economic participation

• Malicious behavior results in reputation penalties

The implementation balances security with usability:

1 func (n *Node) GetWalletReputation(address string)
float64 {

2 balance := n.graph.State[address]
3 if balance >= PovertyLine {
4 return MaxReputation
5 }
6

7 reputation, exists := n.reputations[address]
8 if !exists {
9 balanceWeight := float64(balance) / float64(

PovertyLine)
10 return InitialReputation * (1 + balanceWeight)
11 }
12 return reputation
13 }

8.1.2 Transaction Validation Pipeline

Every transaction goes through a rigorous multi-stage val-
idation process before being accepted into the network:

1. Basic Structure Validation:

• Correct transaction format

• Required fields present

• Valid address formats

• Minimum fee requirements

2. Cryptographic Validation:

• Transaction hash verification

• Signature authenticity

• Mining proof validation (if applicable)

3. Economic Validation:

• Balance sufficiency

• Fee requirements

• Double-spend prevention

4. Reputation-Based Validation:

• Sender reputation check

• Special rules for new accounts

• Minimum amount requirements for first transac-
tions

The validation pipeline is implemented as a series of
checks:

1 func (g *Graph) ValidateTransaction(tx Transaction)
error {

2 // Stage 1: Basic validation
3 if err := tx.ValidateBasic(); err != nil {
4 return err
5 }
6

7 // Stage 2: Cryptographic validation
8 if err := tx.ValidateCryptographic(); err != nil {
9 return err

10 }
11

12 // Stage 3: Reference validation
13 if err := g.ValidateReferences(tx); err != nil {
14 return err
15 }
16

17 // Stage 4: State validation
18 if err := g.ValidateState(tx); err != nil {
19 return err
20 }
21

22 return nil
23 }

8.1.3 Anti-Spam Mechanisms

The system implements multiple layers of spam preven-
tion:

1. Economic Barriers:

• Mandatory transaction fees (0.0001 HYY)

• All fees are burned, permanently reducing sup-
ply

• Higher minimum amounts for first transactions
(0.0001 HYY)

2. Reputation Requirements:

• Minimum reputation threshold for transaction
propagation

• Reputation penalties for invalid transactions

• Gradual trust building through successful trans-
actions

3. Network-Level Protection:

• Peer reputation tracking

• Connection limits and pruning

• Bandwidth allocation based on peer reputation

8.1.4 Attack Resistance

The combination of economic incentives and reputation
tracking creates strong resistance to common attack vec-
tors:

1. Sybil Attacks:

• New accounts have limited privileges

• Economic cost to create meaningful participa-
tion

• Reputation building requires consistent good be-
havior

Hyyperlink Technical Whitepaper 11 December 8, 2024

Hyyperlink Draft 0.1.6

2. Spam Attacks:

• Fee burning makes sustained spam expensive

• Reputation loss for invalid transactions

• Network-level filtering of low-reputation actors

3. Eclipse Attacks:

• Persistent connections to validator nodes

• Peer diversity requirements

• Regular peer rotation and health checks

This comprehensive security approach ensures that:

• The network remains open while resistant to abuse

• Economic incentives align with network health

• Bad actors face increasing costs and decreasing capa-
bilities

• Legitimate users can easily participate and build trust

• The system can automatically adapt to changing
threat patterns

8.2 Transaction Filtering

The Hyyperlink network implements a transaction filter-
ing system that acts as the first line of defense against
spam and invalid transactions. This filtering happens be-
fore transactions enter the wider network, reducing unnec-
essary bandwidth usage and processing load.

8.2.1 Filtering Objectives

The transaction filtering system serves multiple purposes:

• Prevents obviously invalid transactions from propa-
gating

• Enforces economic rules for network participation

• Protects against common spam patterns

• Provides special handling for new users

• Ensures efficient use of network resources

8.2.2 Core Filtering Rules

The system implements several key validation rules:

1. Fee Validation:

• Every transaction must include a minimum base
fee

• Fees are burned to create deflationary pressure

2. Reference Requirements:

• Transactions must reference existing transac-
tions

• Minimum reference count ensures DAG connec-
tivity

• References must be within valid time window

3. New User Protection:

• First-time transactions face stricter require-
ments.

• Mining proofs exempt from these restrictions

The filtering algorithm implements these rules in a sys-
tematic way:

Algorithm 2 Transaction Validation

1: if tx.Fee < BaseFee then return ”fee too low”
2: end if
3: if len(tx.References) < MinReferences then re-

turn ”insufficient references”
4: end if
5: if IsNewUser(tx.From) and tx.MiningProof = nil

then
6: totalAmount← 0
7: for each change in tx.Changes do
8: totalAmount ← totalAmount +

change.Amount
9: end for

10: if totalAmount <
MinimumFirstTransactionAmount then return
”first transaction amount too low”

11: end if
12: end if

8.2.3 Special Cases and Exceptions

The filtering system includes special handling for certain
transaction types:

1. Mining Rewards:

• Bypass normal reference requirements

• Must include valid mining proof

• Still subject to fee requirements

2. Validator Transactions:

• Priority processing

• Relaxed reference requirements

• Enhanced propagation rules

3. High-Value Accounts:

• Accounts above poverty line get preferential
treatment

• Reduced filtering restrictions

• Faster propagation through network

8.2.4 Impact on Network Health

The filtering system provides several key benefits:

• Resource Efficiency:

– Early rejection of invalid transactions

– Reduced network bandwidth usage

– Lower processing overhead on nodes

• Spam Prevention:

– Economic barriers to entry

– Progressive difficulty for new accounts

– Automatic filtering of dust transactions

• Network Stability:

– Controlled transaction flow

– Predictable resource usage

– Self-regulating participation rules

Hyyperlink Technical Whitepaper 12 December 8, 2024

Hyyperlink Draft 0.1.6

This filtering approach ensures that the network can
maintain high performance and security while remaining
accessible to legitimate users. The combination of eco-
nomic incentives, progressive restrictions, and special case
handling creates a robust first line of defense against net-
work abuse.

9 Transaction Model

The system uses an instruction-based transaction model
where each transaction contains one or more changes with
specific instruction types. Each instruction type defines a
specific operation on the network state.

9.1 Transaction Structure

Each transaction contains:

• Source address (From)

• One or more changes with instruction types

• Network fee

• References to previous transactions

• Cryptographic signature

• Optional mining proof for mining transactions

9.2 Instruction Types

The system supports various instruction types:

1 const (
2 InstructionTransfer = "Transfer"
3 InstructionCreateToken = "CreateToken"
4 InstructionCreateNFT = "CreateNFT"
5 InstructionMintSupply = "MintSupply"
6 InstructionBurnSupply = "BurnSupply"
7 InstructionTransferNFT = "TransferNFT"
8 InstructionMiningReward = "MiningReward"
9 InstructionTokenGrant = "TokenGrant"

10)

10 Account System

10.1 Account Creation

Hyyperlink accounts are derived directly from Ed25519
key pairs. The process is straightforward:

1. Generate a new Ed25519 key pair

2. Take the 32-byte public key

3. Encode it using Base58 encoding

The resulting Base58-encoded string serves as the ac-
count address. This process is implemented as:

1 func PublicKeyToAddress(publicKey ed25519.PublicKey)
string {

2 return base58.Encode(publicKey)
3 }
4

5 // Account creation example:
6 pubKey, privKey, _ := ed25519.GenerateKey(nil)
7 address := PublicKeyToAddress(pubKey)

10.2 Address Format

Addresses in Hyyperlink have the following properties:

• Fixed length of characters

• Base58 encoded (using digits and letters, excluding
similar-looking characters)

• Derived directly from Ed25519 public keys

• No checksum or network prefix

This simple addressing scheme provides several benefits:

• Direct relationship between addresses and public keys

• No address generation overhead

• Efficient validation (just Base58 decode and length
check)

• Human-readable format suitable for display and copy-
ing

Address validation is performed by checking the Base58
decoding and length:

1 func IsValidAddress(address string) bool {
2 _, err := base58.Decode(address)
3 return err == nil && len(address) == 44
4 }

11 Token Economics

11.1 Special Addresses

The system utilizes two special-purpose addresses for to-
ken management:

11.1.1 Token Grant Address

Hyyperlink network’s special Token Grant address
(11)
serves as the source of all token issuance. It has these
unique properties:

• Initial balance of 100 million tokens

• Source of genesis distribution

• Issues mining rewards

• Transactions require primary validator signature

11.1.2 Burn Address

The Burn address
(00) per-
manently removes tokens from circulation:

• Receives all transaction fees

• Cannot send tokens

• Tokens sent here are permanently removed from cir-
culation

• Balance increases but never decreases

Hyyperlink Technical Whitepaper 13 December 8, 2024

Hyyperlink Draft 0.1.6

11.2 Token Units

Each Hyyperlink token (HYY) is divisible into 100,000,000
units:

• 1 HYY = 100,000,000 units

• Smallest unit = 0.00000001 HYY

• All internal calculations use integer units

• Display values are converted to decimal form

For example:

• 1.00000000 HYY = 100,000,000 units

• 0.00000001 HYY = 1 unit

• 123.45678900 HYY = 12,345,678,900 units

This level of divisibility ensures precise value transfer
while maintaining integer-based calculations for maximum
accuracy.

11.3 Supply Mechanics

The Hyyperlink token supply starts with 100 million to-
kens and targets 2

11.3.1 Initial Distribution

The initial 100 million tokens are distributed through a
genesis transaction:

• Issued from TokenGrantAddress

• Requires primary validator signature

• Sent to GenesisAddress
(47LEQrmYCt2tJsJv8ET6vZUuaQXxcTtrFFUTe4igdWV5)

• Includes fee to cover future transactions

11.3.2 Supply Inflation

New tokens enter circulation through mining rewards:

• Base reward of 1.001 tokens per block

• Difficulty adjusts to target 2

• Rewards double for each difficulty level above mini-
mum

• Mining requires proof-of-work validation

11.3.3 Supply Deflation

Tokens are removed from circulation through transaction
fees:

• Every transaction requires a fee

• Fees are sent to the Burn address

• Burned tokens are permanently removed from supply

• Fee structure scales with transaction size

This dual mechanism creates a dynamic balance:

• Mining gradually increases the token supply

• Transaction activity gradually decreases the supply

• Network usage directly influences token economics

• Natural equilibrium between inflation and deflation

The system starts with 100 million tokens in circulation
through the genesis transaction. Mining rewards provide
controlled inflation while transaction fees create deflation-
ary pressure to help maintain token value.

12 Conclusion

The Hyyperlink system presents a novel approach to digi-
tal currency, combining DAG-based transaction processing
with validator consensus and reputation-based spam pre-
vention. The architecture provides high throughput while
maintaining security and decentralization through care-
fully designed incentive structures and validation mecha-
nisms.

13 Mining and Validation

13.1 Mining Proof Verification

Mining proofs are verified through a multi-step process:

1 // 1. Verify the winning key meets difficulty
requirement

2 isWinner, difficulty := IsWinningKey(proof.
WinningAddress, MinMinerDifficulty)

3 if !isWinner {
4 return false
5 }
6

7 // 2. Construct and verify proof message
8 proofMessage := fmt.Sprintf("%s:%s:%d",
9 proof.WinningAddress,

10 proof.MinerAddress,
11 tx.Timestamp)
12

13 // 3. Verify winning key signature
14 if !ed25519.Verify(winningPubKey,
15 []byte(proofMessage),
16 proof.WinningSignature) {
17 return false
18 }
19

20 // 4. Verify miner signature
21 if !ed25519.Verify(minerPubKey,
22 []byte(proofMessage),
23 proof.MinerSignature) {
24 return false
25 }
26

27 // 5. Calculate and verify reward
28 reward := CalculateMinerReward(difficulty)
29 if tx.Changes[0].Amount != reward-BaseFee {
30 return false
31 }

The difficulty check is performed by counting leading
zeros in the SHA3-256 hash of the public key:

1 func IsWinningKey(pubKeyBase58 string,
targetDifficulty int) (bool, int) {

2 hash := sha3.Sum256([]byte(pubKeyBase58))
3 difficulty := 0
4

5 for _, char := range fmt.Sprintf("%x", hash) {
6 if char == ’0’ {
7 difficulty++
8 } else {
9 break

10 }
11 }
12

13 return difficulty >= targetDifficulty, difficulty
14 }

Hyyperlink Technical Whitepaper 14 December 8, 2024

	Overview
	Network Architecture
	P2P Network
	Network Protocols
	Peer Selection and Reputation
	Reputation Scoring
	Transaction Propagation Rules
	Connection Management

	Consensus Mechanism
	DAG Structure
	Candidate Selection
	Reference Selection Algorithm
	Reference Validation

	Transaction Processing
	Reference Resolution
	State Application

	Token Generation Through Key Discovery
	Key Discovery Verification
	Mining Process Details
	Mining Reward Calculation
	Mining Process Implementation
	Mining Reward Issuance

	Transaction Processing
	Transaction Creation and Validation
	Reference Requirements
	Balance and Fee Rules

	Transaction Propagation
	Reputation Scoring
	Propagation Rules
	Network Optimization
	Gossip Protocol

	Cryptographic Verification
	Stream Management
	State Updates
	Update Process
	Safety Mechanisms

	Reputation System Implementation
	Wallet Reputation Calculation
	Peer Reputation Management
	Reputation Impact on Network Operations

	State Management
	Graph State
	Database Management
	Performance Optimizations
	Reliability Mechanisms
	File System Safety

	Network Synchronization
	Full Sync Protocol

	Security and Spam Prevention
	Reputation System Architecture
	Wallet Reputation
	Transaction Validation Pipeline
	Anti-Spam Mechanisms
	Attack Resistance

	Transaction Filtering
	Filtering Objectives
	Core Filtering Rules
	Special Cases and Exceptions
	Impact on Network Health

	Transaction Model
	Transaction Structure
	Instruction Types

	Account System
	Account Creation
	Address Format

	Token Economics
	Special Addresses
	Token Grant Address
	Burn Address

	Token Units
	Supply Mechanics
	Initial Distribution
	Supply Inflation
	Supply Deflation

	Conclusion
	Mining and Validation
	Mining Proof Verification

